Автономная некоммерческая профессиональная образовательная организация «КАЛИНИНГРАДСКИЙ КОЛЛЕДЖ УПРАВЛЕНИЯ»

Утверждено Учебно-методическим советом Колледжа протокол заседания № 81 от 30.10.2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (ОП.03)

По специальности 09.02.13 «Интеграция решений с применением

технологий искусственного интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения Очная

Лист согласования рабочей программы дисциплины

Рабочая программа дисциплины ОП.03 «Теория вероятностей и математическая статистика» разработана в соответствии с федеральным государственным образовательным стандартом среднего профессионального образования, утвержденным приказом Минпросвещения от 24.12.2024 № 1025 «Об утверждении федерального государственного образовательного стандарта среднего профессионального образования по специальности 09.02.13 Интеграция решений с применением технологий искусственного интеллекта.

Рабочая программа дисциплины рассмотрена и одобрена на заседании Учебнометодического совета колледжа, протокол № 81 от 30.10.2025г.

Регистрационный номер 10ИИ/25

- 1 Цели и задачи освоения дисциплины
- 2 Место дисциплины в структуре ОПОП
- 3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы
- 4 Объем, структура и содержание дисциплины в зачетных единицах с указанием количества академических/астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.
- 5 Перечень образовательных (информационных) технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения, современных профессиональных баз данных и информационных справочных систем
- 6 Оценочные средства и методические материалы по итогам освоения дисциплины
- 7 Основная и дополнительная учебная литература, и электронные образовательные ресурсы, необходимые для освоения дисциплины
- 8 Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет» необходимые для освоения дисциплины
- 9 Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Приложение 1. Оценочные средства для проведения входного, текущего, рубежного контроля и промежуточной аттестации обучающихся по дисциплине и методические материалы по ее освоению

1. Цели и задачи освоения дисциплины

Целями освоения дисциплины OП.03 «Теория вероятностей и математическая статистика» являются: формирование у обучающихся прочных теоретических знаний и практических навыков в области случайных явлений, вероятностного моделирования и статистического анализа данных; овладение основными понятиями и методами теории вероятностей — случайными событиями, вероятностными пространствами, дискретными и непрерывными случайными величинами, законами распределения, числовыми характеристиками, а также ключевыми методами математической статистики — оценкой параметров, проверкой гипотез, корреляционным и регрессионным анализом; развитие способности применять вероятностно-статистический инструментарий для анализа реальных данных, интерпретации результатов и принятия обоснованных решений в деятельности, неопределённости профессиональной особенно В условиях вариативности; воспитание умения самостоятельно работать с учебной и научной литературой по теории вероятностей и статистике, а также использовать программные средства (например, Excel, Python, R) для обработки данных; повышение уровня общей математической и аналитической культуры, а также интеллектуальной готовности выпускников к освоению современных методов анализа данных, машинного обучения и других цифровых технологий, основанных на стохастических моделях.

Задачами освоения дисциплины «Теория вероятностей и математическая статистика» являются:

- 1. Формирование фундаментальных понятий: Изучение основ теории вероятностей случайных событий, вероятностных пространств, условной вероятности, независимости, случайных величин и их распределений. Освоение ключевых понятий математической статистики выборки, статистических оценок, доверительных интервалов, проверки гипотез, корреляционного и регрессионного анализа.
- 2. Развитие практических навыков: Овладение методами вычисления вероятностей, построения законов распределения, расчета числовых характеристик случайных величин, обработки экспериментальных данных, построения и интерпретации статистических моделей, использования таблиц и программных средств для статистического анализа.
- 3. Применение полученных знаний в профессиональной деятельности: Освоение принципов построения вероятностных моделей реальных явлений, применение методов статистического вывода для принятия решений в условиях неопределенности, использование инструментов оценки рисков, прогнозирования и анализа данных в экономике, управлении, социологии, технике и других областях.
- 4. Подготовка к дальнейшему обучению: Создание базы для изучения специализированных курсов, опирающихся на вероятностно-статистический аппарат (например, эконометрика, финансовая математика, машинное обучение, теория массового обслуживания, анализ данных, исследование операций).

Программа составлена в соответствии с требованиями Федерального закона от 29.12.2012 № 273-ФЗ (ред. от 23.05.2025) «Об образовании в Российской Федерации», Приказа Министерства просвещения Российской Федерации от 24 августа 2022 г. № 762 «Порядок организации и осуществления образовательной деятельности по образовательным программам среднего профессионального образования», ФГОС СПО и учебным планом по специальности: 09.02.13 «Интеграция решений с применением технологий искусственного интеллекта».

2. Место дисциплины в структуре ППССЗ

Учебная дисциплина ОП.03 «Теория вероятностей и математическая статистика» входит в общепрофессиональный цикл.

Изучается на втором курсе в третьем семестре на базе основного общего образования. Промежуточная аттестация проводится в форме экзамена.

В результате освоения дисциплины обучающийся должен:

уметь:

- применять вероятностные и статистические методы для решения практических задач в профессиональной деятельности;
- строить и анализировать вероятностно-статистические модели для оценки состояния и прогнозирования развития явлений и процессов;

знать:

– основные понятия и методы теории вероятностей и математической статистики, включая законы распределения случайных величин, выборочный метод, статистическое оценивание и проверку гипотез.

3. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Результатами освоения рабочей программы учебной дисциплины является овладение студентами следующими компетенциями:

- OK 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.
- OK 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности.

Личностные результаты реализации программы воспитания

- Осознавать себя гражданином России и защитником Отечества, выражать свою российскую идентичность в поликультурном и многоконфессиональном российском обществе, и современном мировом сообществе. Сознавать свое единство с народом России, с Российским государством, демонстрирующий ответственность за развитие страны. Проявлять готовность к защите Родины, способность аргументированно отстаивать суверенитет и достоинство народа России, сохранять и защищать историческую правду о Российском государстве.
- Проявлять и демонстрировать уважение законных интересов и прав представителей различных этнокультурных, социальных, конфессиональных групп в российском обществе; национального достоинства, религиозных убеждений с учётом соблюдения необходимости обеспечения конституционных прав и свобод граждан. Понимать и деятельно выражать ценность межрелигиозного и межнационального согласия людей, граждан, народов в России. Выражать сопричастность к преумножению и трансляции культурных традиций и ценностей многонационального российского государства, включенный в общественные инициативы, направленные на их сохранение социальных перемен.
- Демонстрировать готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения в профессиональной деятельности.
- Проявлять сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности.
- Проявлять ценностное отношение к культуре и искусству, к культуре речи и культуре поведения, к красоте и гармонии.

4. Объем, структура и содержание дисциплины с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся.

4.1 Объем дисциплины

Таблица 1 – Трудоемкость дисциплины

Объем дисциплины	Всего акад.
Ообем дисциплины	часов
Всего академических часов учебных занятий	62
В том числе:	
контактной работы обучающихся с преподавателем	58
по видам учебных занятий:	
занятий лекционного типа	20
занятия семинарского типа	34
Самостоятельная работа обучающихся:	4
Промежуточная аттестация – экзамен	4

4.2. Структура дисциплины

Таблица 2 – Структур дисциплины

Раздел дисциплины	Семестр	Неделя семестра	Всего	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах ауд.)			Вид контроля*
				Лекции	Практ. зан.	СРС	
Раздел 1. Основы теории вероятностей	3	1-6	28	10	18	-	Текущий контроль Рубежный контроль
Раздел 2. Математическая статистика	3	7-12	26	10	16	-	Текущий контроль
Экзамен	3	17	8	-	4	4	Промежуточная аттестация
Всего учебная нагрузка обучающихся			62	20	38	4	

4.3. Содержание дисциплины, структурированное по темам (разделам) 4.3.1.Теоретические занятия- лекции

Таблица 3 – Содержание лекционного курса

Наименование раздела (модуля) дисциплины, темы	Содержание	Кол-во часов	Форма проведения занятия	Оценочное средство
Раздел 1. Основы теории вероятностей				
понятия теории	Содержание Пространство элементарных исходов. События и вероятности. Условная вероятность и независимость событий.	4	лекция- визуализация	Устный опрос
величины и распределения	Содержание Дискретные и непрерывные случайные величины. Математическое ожидание, дисперсия, ковариация. Основные распределения: нормальное, биномиальное, пуассоновское.	4	лекция- визуализация	Устный опрос. Рубежный контроль

Тема 1.3. Центральная	Содержание		лекция-	Устный опрос
предельная теорема. Закон	Сущность центральной предельной теоремы.		визуализация	
больших чисел	Применение центральной предельной теоремы для больших	2		
	выборок. Понятие закона больших чисел.	2		
	Связь между средним значением выборки и математическим			
	ожиданием.			
Раздел 2. Математическая	я статистика	10		
Тема 2.1. Оценка	Содержание		лекция-	Устный опрос
параметров. Тестирование	Точечные и интервальные оценки.		визуализация	_
гипотез	Методы оценки параметров: метод максимального правдоподобия.		-	
	Оценка доверительных интервалов. Основы статистических	4		
	гипотез.			
	Проверка гипотез: критерий Стьюдента, критерий χ².			
	Ошибки первого и второго рода.			
Тема 2.2. Корреляция и	Содержание		лекция-	Устный опрос
	Понятие корреляции и ковариации.		визуализация	
Регрессионный анализ	Коэффициент корреляции Пирсона. Применение корреляции для			
	анализа данных.	4		
	Линейная регрессия: методы оценки и интерпретация.			
	Нелинейная регрессия.			
	Применение регрессионных методов для предсказания данных.			
Тема 2.3. Анализ	Содержание		лекция-	Устный опрос
дисперсии	Введение в дисперсионный анализ.	2	визуализация	
	Применение анализа дисперсий для проверки различий между	<i>L</i>		
	группами.			
Всего:		20		

4.3.2. Занятия семинарского типа

Таблица 4 – Содержание практического (семинарского) курса

Темы практических занятий	Кол-во часов	Форма проведения занятия	Оценочное средство
Раздел 1. Основы теории вероятностей	18		
Практическое занятие №1. Вычисление вероятностей событий на	4	практическое занятие в	Устный опрос
основе классического определения вероятности.	4	форме практикума.	
Практическое занятие №2. Вычисление условной вероятности и		практическое занятие в	Устный опрос
проверка независимости событий. Повторение независимых	2	форме практикума.	
испытаний.			
Практическое занятие №3. Вычисление математического ожидания	4	практическое занятие в	Устный опрос
и дисперсии дискретных случайных величин.	4	форме практикума.	
Практическая работа №4. Построение и анализ биномиального и	4	практическое занятие в	Устный опрос
нормального распределений. Распределения Пуассона	4	форме практикума.	
Практическое занятие №5. Центральная предельная теорема. Закон		практическое занятие в	Устный опрос
больших чисел Оценка среднего значения выборки и	4	форме практикума.	
математического ожидания с помощью закона больших чисел.			
Раздел 2. Математическая статистика	16		
Практическое занятие №6. Построение точечных оценок	2	практическое занятие в	Устный опрос
параметров для различных распределений.	2	форме практикума.	
Практическое занятие №7. Оценка доверительных интервалов для	4	практическое занятие в	Устный опрос
среднего значения и дисперсии.	4	форме практикума.	
Практическое занятие №8. Проверка гипотез с использованием		практическое занятие в	Устный опрос
критерия Стьюдента для двух выборок. Применение критерия χ ²	2	форме практикума.	
для проверки гипотез о независимости признаков. Оценка ошибок	2		
первого и второго рода при тестировании гипотез.			
Практическое занятие №9. Вычисление коэффициента корреляции	2	практическое занятие в	Устный опрос
Пирсона для анализа зависимостей между признаками.	2	форме практикума.	
Практическое занятие №10. Вычисление ковариации и её	4	практическое занятие в	Устный опрос
применение для оценки совместной изменчивости признаков.	7	форме практикума.	
Практическое занятие №11 Построение линейной регрессионной	2	практическое занятие в	Устный опрос
модели на основе экспериментальных данных	2	форме практикума.	
Всего	34		

4.3.3. Самостоятельная работа

Таблица 5 – Самостоятельная работа

$N_{\underline{0}}$	Тема	Кол-во часов	Оценочное
Π/Π	1 CMa	Кол-во часов	средство
1.	Подготовка к экзамену	4	Экзамен
	Всего	4	

5. Перечень образовательных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень лицензионного программного обеспечения, современных профессиональных баз данных и информационных справочных систем

5.1. Образовательные технологии

При реализации различных видов учебной работы по дисциплине «Теория вероятностей и математическая статистика» используются следующие образовательные технологии:

- технологии проблемного обучения: проблемная лекция, практическое занятие в форме практикума.
- информационно-коммуникативные образовательные технологии: лекциявизуализация.
- инновационные методы, которые предполагают применение информационных образовательных технологий, а также учебно-методических материалов, соответствующих современному мировому уровню, в процессе преподавания дисциплины:
- использование медиаресурсов, энциклопедий, электронных библиотек и Интернет;
 - консультирование студентов с использованием электронной почты;
- использование программно-педагогических тестовых заданий для проверки знаний обучающихся.

5.2. Лицензионное программное обеспечение

В образовательном процессе при изучении дисциплины используется следующее лицензионное программное обеспечение:

1. Лицензии Microsoft Open License (Value) Academic.

Включают продукты Microsoft Office и Microsoft Windows для компьютерных лабораторий и сотрудников института:

- программный продукт Office Home and Business 2016 2шт (товарная накладная TN000011138 от 01.10.19);
- электронная лицензия 02558535ZZE2106 дата выдачи первоначальной лицензии 21.06.2019 (товарная накладная TN000006340 от 03.07.19);
 - 93074333ZZE1602 дата выдачи первоначальной лицензии 21.05.2015;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 19.01.2012;
 - 69578000ZZE1401 дата выдачи первоначальной лицензии 30.11.2009;
 - 66190326ZZE1111 дата выдачи первоначальной лицензии 30.11.2009;
 - 62445636ZZE0907 дата выдачи первоначальной лицензии 12.07.2007;
 - 61552755ZZE0812 дата выдачи первоначальной лицензии 27.12.2006;
 - 60804292ZZE0807 дата выдачи первоначальной лицензии 06.07.2006.
- 2. Лицензионное соглашение 9334508 1C: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях:
 - Управление производственным предприятием;
 - Управление торговлей;
 - Зарплата и Управление Персоналом;
 - Бухгалтерия.
- 3. Сублицензионный договор №016/220823/006 от 22.08.2023. Неисключительные права на использование программных продуктов «1С: Комплект поддержки» 1С: КП базовый 12 мес. (основной продукт «1С: Предприятие 8. Комплект для обучения в высших и средних учебных заведениях» рег. номер 9334508).

- 4. Договор №ИП20-92 от 01.03.2020 об информационной поддержке и обеспечения доступа к информационным ресурсам Сети Консультант Плюс в объеме комплекта Систем Справочно Правовой Системы Консультант Плюс (число ОД 50).
- 5.Лицензия 1C1C-240118-105136-523-1918 Kaspersky Endpoint Security для бизнеса Стандартный Russian Edition. 50-99 Node 1 year Educational Renewal License (80 Users до 11.04.2025).
- 6.Лицензия №54736 на право использования программного продукта «Система тестирования INDIGO» (бессрочная академическая на 30 подключений от 07.09.2018).
- 7. Договор с ООО «СкайДНС» Ю-04056/1 на оказание услуг контент-фильтрации сроком 12 месяцев от 10 января 2025 года.

5.3. Современные профессиональные базы данных

В образовательном процессе при изучении дисциплины используются следующие современные профессиональные базы данных:

Электронно-библиотечная система «Университетская Библиотека Онлайн» - https://biblioclub.ru/.

Образовательная платформа «Юрайт» - https://www.urait.ru/

Научная электронная библиотека - www.elibrary.ru.

Реферативная и справочная база данных рецензируемой литературы Scopus - https://www.scopus.com.

Политематическая реферативно-библиографическая и наукометрическая (библиометрическая) база данных Web of Science - https://apps.webofknowledge.com

Архив научных журналов НП Национальный Электронно-Информационный Консорциум (НЭИКОН) (arch.neicon.ru)

Научная библиотека открытого доступа - https://cyberleninka.ru

5.4. Информационные справочные системы

Изучение дисциплины сопровождается применением информационных справочных систем:

1. Справочная информационно-правовая система «КонсультантПлюс» (договор № ИП20-92 от 01.03.2020).

6. Оценочные средства и методические материалы по итогам освоения дисциплины

При разработке оценочных средств преподавателем используются базы данных педагогических измерительных материалов, предоставленных ООО «Научно-исследовательский институт мониторинга качества образования».

Типовые задания, база тестов и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе ее освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении 1 к рабочей программе дисциплины.

Универсальная система оценивания результатов обучения выполняется в соответствии с Положением о формах, периодичности и порядке проведения текущего контроля успеваемости и промежуточной аттестации обучающихся в АНПОО «ККУ», утвержденным приказом директора от 03.02.2020 г. № 31 о/д и включает в себя системы оценок:

- 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»;
- 2) «зачтено», «не зачтено».

7. Основная и дополнительная учебной литература и электронные образовательные ресурсы, необходимые для освоения дисциплины

7.1. Основная учебная литература

- 1. Прохоров Ю. В. Теория вероятностей и математическая статистика: учебник и практикум для среднего профессионального образования / Ю. В. Прохоров, Л. С. Пономаренко. 3-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 219 с. (Профессиональное образование). ISBN 978-5-534-20240-3. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/566127
- 2. Сидняев Н. И. Теория вероятностей и математическая статистика : учебник для среднего профессионального образования / Н. И. Сидняев. Москва : Издательство Юрайт, 2025. 219 с. (Профессиональное образование). ISBN 978-5-534-04091-3. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/560790

7.2. Дополнительные источники

- 1. Гмурман, В. Е. Руководство к решению задач по теории вероятностей и математической статистике: учебник для среднего профессионального образования / В. Е. Гмурман. 11-е изд., перераб. и доп. Москва: Издательство Юрайт, 2025. 395 с. (Профессиональное образование). ISBN 978-5-534-21642-4. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/581859
- 2. Далингер, В. А. Теория вероятностей и математическая статистика с применением Mathcad: учебник и практикум для среднего профессионального образования / В. А. Далингер, С. Д. Симонженков, Б. С. Галюкшов. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2025. 145 с. (Профессиональное образование). ISBN 978-5-534-10081-5. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562190
- 3. Кацман, Ю. Я. Теория вероятностей и математическая статистика. Примеры с решениями: учебник для среднего профессионального образования / Ю. Я. Кацман. Москва: Издательство Юрайт, 2025. 138 с. (Профессиональное образование). ISBN 978-5-534-21497-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/574961
- 4. Кремер, Н. Ш. Математическая статистика : учебник и практикум для среднего профессионального образования / Н. Ш. Кремер. 5-е изд. Москва : Издательство Юрайт, 2025. 259 с. (Профессиональное образование). ISBN 978-5-534-01662-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/562912
- 5. Олесов, А. В. Введение в теорию вероятностей и математическую статистику: учебник для среднего профессионального образования / А. В. Олесов. Москва: Издательство Юрайт, 2025. 285 с. (Профессиональное образование). ISBN 978-5-534-21567-0. Текст: электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/581746
- 6. Энатская, Н. Ю. Теория вероятностей: учебник для среднего профессионального образования / Н. Ю. Энатская. Москва: Издательство Юрайт, 2025. 204 с. (Профессиональное образование). ISBN 978-5-9916-9315-8. Текст : электронный // Образовательная платформа Юрайт [сайт]. URL: https://urait.ru/bcode/561151

7.3. Электронные образовательные ресурсы

1. Коллекция Федерального центра информационно-образовательных ресурсов ФЦИОР: http://fcior.edu.ru/

- 2. Единая коллекция цифровых образовательных ресурсов: http://schoolcollection.edu.ru.
- 3. Федеральный образовательный портал Экономика, Социология, Менеджмент http://ecsocman.hse.ru
 - 4. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
- 5. Национальный центр информационного противодействия терроризму и экстремизму в образовательной среде и сети Интернет http://ncpti.su/

8. Дополнительные ресурсы информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. СПС «Консультант-плюс» www.consultant.ru.
- 2. Электронно-библиотечная система «Университетская Библиотека Онлайн» https://biblioclub.ru/.
 - 3. Научная электронная библиотека www.elibrary.ru.
 - 4. ООО «Электронное издательство Юрайт» www.urait.ru.

9. Требования к минимальному материально-техническому обеспечению, необходимого для осуществления образовательного процесса по дисциплине

Для изучения дисциплины используется любая мультимедийная аудитория. Мультимедийная аудитория оснащена современными средствами воспроизведения и визуализации любой видео и аудио информации, получения и передачи электронных документов.

Типовая комплектация мультимедийной аудитории состоит из:

мультимедийного проектора,

проекционного экрана,

акустической системы,

персонального компьютера (с техническими характеристиками не ниже: процессор не ниже 1.6.GHz, оперативная память – 1 Gb, интерфейсы подключения: USB, audio, VGA.

Преподаватель имеет возможность легко управлять всей системой, что позволяет проводить лекции, практические занятия, презентации, вебинары, конференции и другие виды аудиторной нагрузки обучающихся в удобной и доступной для них форме с применением современных интерактивных средств обучения, в том числе с использованием в процессе обучения всех корпоративных ресурсов. Мультимедийная аудитория также оснащена широкополосным доступом в сеть «Интернет».

Компьютерное оборудованием имеет соответствующее лицензионное программное обеспечение.

Для проведения занятий лекционного типа предлагаются наборы демонстрационного оборудования и учебно-наглядных пособий, обеспечивающие тематические иллюстрации, соответствующие рабочей учебной программе дисциплин.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечены доступом в электронную информационно-образовательную среду Колледжа.

Учебно-методическая литература для данной дисциплины имеется в наличии в электронно-библиотечной системе «Университетская библиотека ONLINE», доступ к которой предоставлен обучающимся. Электронно-библиотечная система «Университетская библиотека ONLINE» реализует легальное хранение, распространение и защиту цифрового контента учебно-методической литературы для вузов с условием обязательного соблюдения авторских и смежных прав. Электронно-библиотечная система «Университетская библиотека ONLINE» обеспечивает широкий законный доступ к необходимым для образовательного процесса изданиям с использованием инновационных технологий и соответствует всем требованиям ФГОС СПО.

Приложение 1 к рабочей программе дисциплины «Теория вероятностей и математическая статистика» (ОП.03)

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ВХОДНОГО, ТЕКУЩЕГО, РУБЕЖНОГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ И МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ЕЕ ОСВОЕНИЮ

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА (ОП.03)

По специальности **09.02.13 «Интеграция решений с**

применением технологий искусственного

интеллекта»

Квалификация «Специалист по работе с искусственным

интеллектом»

Форма обучения очная

6.1. Оценочные средства по итогам освоения дисциплины

6.1.1. Цель оценочных средств

Целью оценочных средств является установление соответствия уровня подготовленности обучающегося на данном этапе обучения требованиям рабочей программы по дисциплине «Теория вероятностей и математическая статистика».

Оценочные средства предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Теория вероятностей и математическая статистика». Перечень видов оценочных средств соответствует рабочей программе дисциплины.

Комплект оценочных средств включает контрольные материалы для проведения всех видов контроля в форме устного и письменного опроса, практических занятий, и промежуточной аттестации в форме вопросов и заданий к зачету с оценкой.

Структура и содержание заданий — задания разработаны в соответствии с рабочей программой дисциплины «Теория вероятностей и математическая статистика».

6.1.2. Объекты оценивания – результаты освоения дисциплины

Объектом оценивания являются формируемые компетенции: ОК 01, ОК 02. Результатами освоения дисциплины являются:

уметь:

- применять вероятностные и статистические методы как часть математического инструментария для решения практических задач в области разработки и интеграции ИИ-решений;
- строить и анализировать статистические модели для оценки, интерпретации и прогнозирования состояния явлений и процессов на основе выборочных данных;

знать:

— основы теории вероятностей и математической статистики, включая виды распределений случайных величин, методы статистического оценивания, проверки гипотез, корреляционного и регрессионного анализа, необходимые для работы с данными в задачах искусственного интеллекта.

6.1.3. Формы контроля и оценки результатов освоения

Контроль и оценка результатов освоения — это выявление, измерение и оценивание знаний и умений формирующихся компетенций в рамках освоения дисциплины. В соответствии с учебным планом и рабочей программой дисциплины «Теория вероятностей и математическая статистика» предусматривается входной, текущий, рубежный и промежуточный контроль результатов освоения (промежуточная аттестация в форме экзамена).

6.1.4. Примерные (типовые) контрольные задания или иные материалы, необходимые для оценки знаний, умений, владений (или опыта деятельности), в процессе освоения дисциплины характеризующих этапы формирования компетенций в процессе освоения дисциплины Контрольно-измерительные материалы для текущего контроля по учебной дисциплине

Тесты

Вариант 1

1. Вероятностью события называется:

- а) число благоприятных исходов;
- б) числовая характеристика степени возможности появления события;
- в) отношение неблагоприятных исходов к общему числу исходов.

- 2. Формула полной вероятности применяется, когда:
 - а) события независимы;
 - б) события образуют полную группу;
 - в) события совместны.
- 3. Математическое ожидание дискретной случайной величины это:
 - а) среднее взвешенное по вероятностям значение;
 - б) максимальное значение величины;
 - в) дисперсия значений.
- 4. Дисперсия случайной величины характеризует:
 - а) разброс значений вокруг среднего;
 - б) асимметрию распределения;
 - в) среднее значение.
- 5. Несмещенная оценка параметра это оценка, у которой:
 - а) математическое ожидание равно истинному значению параметра;
 - б) дисперсия минимальна;
 - в) оценка равна параметру.

Вариант 2

- 1. Условная вероятность P(A|B) вычисляется как:
 - a) $P(A) \cdot P(B)$;
 - б) P(AB) / P(B);
 - B) P(A) + P(B).
- 2. События А и В называются независимыми, если:
 - a) P(A|B) = P(A);
 - 6) P(A) = P(B);
 - в) А и В не могут произойти одновременно.
- 3. Функция распределения F(x) случайной величины X это:
 - а) вероятность того, что X примет значение меньше х;
 - б) плотность распределения;
 - в) математическое ожидание Х.
- 4. Нормальное распределение характеризуется параметрами:
 - а) а и σ;
 - б) λиμ;
 - в) рип.
- 5. Доверительный интервал для математического ожидания строится по формуле:
 - a) $\bar{x} \pm t_{\alpha/2} \cdot s/\sqrt{n}$;
 - δ) $\bar{x} \pm σ$;
 - B) $\bar{x} \pm s^2$.

Вариант 3

- 1. Аксиоматика Колмогорова включает следующее:
 - а) вероятность события неотрицательна;
 - б) вероятность достоверного события равна 0;
 - в) вероятность суммы событий равна произведению их вероятностей.
- 2. Формула Байеса используется для:
 - а) вычисления априорных вероятностей;
 - б) переоценки гипотез после получения данных;
 - в) нахождения полной вероятности.
- 3. Ковариация двух случайных величин характеризует:
 - а) степень линейной зависимости;

- б) независимость величин;
- в) их математические ожидания.

4. Центральная предельная теорема утверждает, что:

- а) сумма большого числа независимых величин распределена нормально;
- б) все величины распределены нормально;
- в) выборочное среднее равно генеральному.

5. Проверка статистической гипотезы основана на:

- а) сравнении с критической областью;
- б) вычислении вероятности;
- в) построении доверительного интервала.

Типовые задания для оценки знаний и умений промежуточной аттестации

Вариант 1

1. Комбинаторика

Сколькими способами можно выбрать 3 книги из 10 различных книг?

2. Классическая вероятность

В урне 6 белых и 4 черных шара. Наудачу извлекают 2 шара. Найдите вероятность того, что они разного цвета.

3. Формула Бернулли

Монету подбрасывают 5 раз. Найдите вероятность выпадения герба ровно 3 раза.

4. Дискретная случайная величина

Дан закон распределения случайной величины X:

X | 1 | 2 | 3

P | 0,3 | 0,5 | 0,2

Найдите математическое ожидание М(X).

5. Непрерывная случайная величина

Плотность распределения случайной величины X задана функцией:

f(x) = 2x при $0 \le x \le 1$, f(x) = 0 для остальных x.

Найдите вероятность $P(0,2 \le X \le 0,5)$.

6. Нормальное распределение

Случайная величина $X \sim N(5, 2)$. Найдите P(3 < X < 7).

7. Статистические оценки

По выборке: 3, 5, 7, 9, 11 найдите выборочное среднее и исправленную дисперсию.

8. Доверительный интервал

По выборке объема n=36 найдено $\bar{x}=20$, s=3. Постройте 95% доверительный интервал для математического ожидания.

9. Проверка гипотез

Проверьте гипотезу H₀: $\mu = 18$ при H₁: $\mu \neq 18$, если $\bar{x} = 20$, s = 4, n = 25, $\alpha = 0.05$.

10. Корреляционный анализ

По данным выборки выборочный коэффициент корреляции r = 0.8. Проверьте гипотезу о значимости коэффициента корреляции при $\alpha = 0.05$, n = 20.

Вариант 2

1. Комбинаторика

Сколькими способами можно распределить 4 различных приза между 6 участниками?

2. Геометрическая вероятность

На отрезке [0; 10] наудачу выбрана точка. Найдите вероятность того, что она попадет в интервал [2; 7].

3. Формула полной вероятности

В двух коробках находятся лампочки: в первой 10 исправных и 2 бракованные, во второй 8 исправных и 4 бракованные. Наудачу выбирают коробку и из нее лампочку. Найдите вероятность вынуть бракованную лампочку.

4. Дискретная случайная величина

Дан закон распределения случайной величины Ү:

Y | -1 | 0 | 2

P | 0,4 | 0,3 | 0,3

Найдите дисперсию D(Y).

5. Непрерывная случайная величина

Функция распределения случайной величины Х:

F(x) = 0 при $x \le 0$, $F(x) = x^2$ при $0 < x \le 1$, F(x) = 1 при x > 1.

Найдите плотность распределения f(x).

6. Нормальное распределение

Случайная величина $X \sim N(10, 3)$. Найдите вероятность P(X > 13).

7. Статистические оценки

По выборке: 2, 4, 6, 8, 10 найдите выборочную медиану и размах.

8. Доверительный интервал для доли

В выборке объема n = 200 обнаружено 120 элементов с признаком. Постройте 90% доверительный интервал для доли признака.

9. Проверка гипотез о среднем

Проверьте гипотезу H_0 : $\mu = 100$ при H_1 : $\mu > 100$, если $\bar{x} = 105$, s = 10, n = 16, $\alpha = 0.05$.

10. Линейная регрессия

По данным выборки построено уравнение регрессии y = 2 + 0.8x. Дайте интерпретацию коэффициентам регрессии.

Вариант 3

1. Комбинаторика

Сколько различных пятизначных чисел можно составить из цифр 1, 2, 3, 4, 5 без повторений?

2. Условная вероятность

Вероятность того, что день будет дождливым, равна 0,3. Вероятность того, что в дождливый день студент опоздает на пару, равна 0,4, а в недождливый - 0,1. Найдите вероятность того, что студент опоздает на пару.

3. Формула Байеса

Используя данные из задания 3 варианта 2, найдите вероятность того, что вынутая бракованная лампочка росhoduт из первой коробки.

4. Дискретная случайная величина

Вероятность успеха в каждом испытании равна 0,6. Производится 4 испытания. Составьте закон распределения числа успехов.

5. Непрерывная случайная величина

Плотность распределения f(x) = 1/2 при $0 \le x \le 2$. Найдите функцию распределения F(x).

6. Показательное распределение

Случайная величина X распределена по показательному закону с параметром $\lambda = 0.5$. Найдите $P(X \le 2)$.

7. Статистические оценки

По выборке объема n=10 найдено $\bar{x}=15$, $\Sigma(x_i-\bar{x})^2=90$. Найдите исправленное стандартное отклонение.

8. Доверительный интервал

Для среднего роста студентов построен 95% доверительный интервал (168; 172). Дайте содержательную интерпретацию этого интервала.

9. Проверка гипотез о дисперсии

Проверьте гипотезу H₀: $\sigma^2 = 25$ при H₁: $\sigma^2 > 25$, если $s^2 = 30$, n = 20, $\alpha = 0.05$.

10. Корреляция и регрессия

По данным о росте и весе студентов выборочный коэффициент корреляции равен 0,6. Объясните смысл этого значения.

Вопросы для проведения экзамена

- 1. Комбинаторика (основные понятия).
- 2. Виды соединений без повторений: перестановки, размещения, сочетания (вывод).
 - 3. Основные понятия теории вероятностей.
 - 4. Вероятность события. Свойства вероятности.
- 5. Сумма событий. Теорема сложения вероятностей для несовместных событий (вывод).
- 6. Произведение событий. Условная вероятность. Теорема умножения вероятностей.
 - 7. Теорема сложения вероятностей для совместных событий.
 - 8. Вероятность произойти хотя бы одному событию.
 - 9. Формула полной вероятности.
 - 10. Формулы Байеса.
 - 11. Повторение независимых испытаний: общая постановка задачи.
 - 12. Формула Бернулли.
 - 13. Случайные величины (основные понятия).
 - 14. Случайная дискретная величина и её числовые характеристики.
 - 15. Случайная непрерывная величина и её числовые характеристики.
 - 16. Понятие биномиального распределения, характеристики.
 - 17. Понятие геометрического распределения, характеристики
 - 18. Основные задачи математической статистики.
 - 19. Первичная обработка результатов. Вариационный ряд.
 - 20. Числовые характеристики вариационного ряда.
 - 21. Эмпирическая функция распределения.
 - 22. Графическое изображение вариационных рядов.
 - 23. Выборочный метод.
 - 24. Статистическое распределение и его характеристики.
 - 25. Точечные оценки параметров распределения.
 - 26. Интервальные оценки параметров распределения.

Критерии оценки промежуточной аттестации в виде экзамена:

- оценка «отлично» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений, понятий, идей; полную степень обоснованности аргументов и обобщений, всесторонность раскрытия темы; наличие знаний интегрированного характера, способность к обобщению; устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует корректную аргументацию и систему доказательств, достоверные примеры, иллюстративный материал, литературные источники;
- оценка «хорошо» выставляется студенту, если студент демонстрирует: знание фактического материала, усвоение общих представлений; достаточную степень

обоснованности аргументов и обобщений; способность к обобщению, устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры, иллюстративный материал;

- оценка «удовлетворительно» выставляется студенту, если студент демонстрирует: недостаточное знание фактического материала; неполную степень обоснованности аргументов и обобщений. Нарушает устную и письменную культуру в ответе и оформлении. Соблюдает логичность и последовательность изложения материала. Использует достоверные примеры;
- оценка «неудовлетворительно» выставляется студенту, если студент демонстрирует: незнание фактического материала; неполную степень обоснованности аргументов и обобщений. Не соблюдает логичность и последовательность изложения материала, устную и письменную культуру в ответе и оформлении. Использует недостоверные примеры.

6.2. Методические рекомендации и указания

6.2.1. Методические указания для обучающихся по освоению учебной дисциплины

Специфика изучения учебной дисциплины ОП.03 «Теория вероятностей и математическая статистика» обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

- изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;
- выполнить задание, отведенное на самостоятельную работу: подготовить и защитить реферат по утвержденной преподавателем теме;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- распоряжение по деканату, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска.

Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, тестового контроля, выполнения заданий для самостоятельной работы и выполнения контрольных работ по теоретическому курсу дисциплины.

6.2.2. Методические рекомендации по выполнению самостоятельной работы студентов

Специфика изучения учебной дисциплины ОП.03 «Теория вероятностей и математическая статистика» обусловлена формой обучения студентов, ее местом в подготовке специалиста среднего звена и временем, отведенным на освоение учебной дисциплины рабочим учебным планом.

Процесс обучения делится на время, отведенное для занятий, проводимых в аудиторной форме (лекции, практические занятия) и время, выделенное на внеаудиторное освоение учебной дисциплины, в том числе и на самостоятельную работу студента.

Лекционная часть учебного курса для студентов проводится в форме обзоров по основным темам. Практические занятия предусмотрены для закрепления теоретических знаний, углубленного рассмотрения наиболее сложных проблем учебной дисциплины, выработки навыков структурно-логического построения учебного материала и отработки навыков самостоятельной подготовки.

Самостоятельная работа студента включает в себя изучение теоретического материала, выполнение практических заданий, подготовку к контрольно-обобщающим мероприятиям.

Для освоения учебной дисциплины студенты должны:

- изучить материал лекционных и практических занятий в полном объеме по разделам учебной дисциплины;
 - выполнить задание, отведенное на самостоятельную работу;
- продемонстрировать сформированность компетенций, закрепленных за учебной дисциплиной во время мероприятий текущего и промежуточного контроля знаний.

Посещение лекционных и практических занятий для студентов является обязательным. Уважительными причинами пропуска аудиторных занятий является:

- освобождение от занятий по причине болезни, выданное медицинским учреждением,
- по распоряжению декана, приказ по вузу об освобождении в связи с участием в внутривузовских, межвузовских и пр. мероприятиях,
- официально оформленное свободное посещение занятий. Пропуски отрабатываются независимо от их причины.

Пропущенные темы лекционных занятий должны быть законспектированы в тетради для лекций, конспект представляется преподавателю для ликвидации пропуска. Пропущенные практические занятия отрабатываются в виде устной защиты практического занятия во время консультаций по дисциплине.

Контроль сформированности компетенций в течение семестра проводится в форме устного опроса на практических занятиях, контроля практических работ, выполнения заданий для самостоятельной работы